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Scientists have long rec-
ognized climate, especial-

ly temperature and precipitation, as one of the
major ecological forces affecting the abun-
dance, location, and ecological health of living
organisms. This relationship is so strong that in
many cases, if biologists know what plants and
animals are present in an area, they can approx-
imate the climate of the area. Quantifying these
relationships will allow scientists to predict the
ecological consequences of global climate
change.  

Recently the scientific community reached a
remarkable consensus on the likelihood and
magnitude of global climate change, describing
a likely scenario of a 3˚C (5.4˚F) average glob-
al warming, significant changes in the patterns
and abundance of precipitation, and 0.6-m (1.9-
ft) sea-level rise in the next 60 years (Houghton
et al. 1990; LaRoe 1991). These changes will
occur faster than previous change in geologic
history and are therefore expected to have
greater ecological impact.

Because of the strong relation between cli-
mate and ecosystem health and distribution, the
U.S. Global Change Research Program has as a
major component the monitoring of plants and
animals to detect, understand, and ultimately
predict the effects of global climate change on

living resources (CEES 1990). The National
Biological Service’s research includes several
projects to monitor the effects of climate change
on animal and plant populations and ecosys-
tems. Not only will the results of these projects
allow a better understanding of the ecological
effects of climate change, but they will also give
an early, clear indication of the onset and mag-
nitude of climate change because living
resources may be sensitive indicators of global
change. 

Determining if long-term change in a
species’ population abundance or distribution
was caused by specific climate changes is an
extremely difficult scientific problem for two
reasons: first, both climate and biological fac-
tors vary greatly from year to year, and these
annual variations often mask long-term trends,
making them difficult to detect. Second, several
factors such as habitat loss, hunting pressure,
competition with other native species and non-
native species, and contaminants are simultane-
ously affecting species’ population size and dis-
tribution along with climate change so that it is
difficult to determine definitively the effect of
any one cause.

Some species of plants and animals already
may be affected by one type of global climate
change: global warming. Much of the evidence
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for this, however, is anecdotal or poorly docu-
mented. For example, some cold-intolerant
species such as opossums (Didelphis spp.) and
armadillos (Dasypus novemcinctus) have
expanded their range significantly northward
during the last 50 years, and some heat-sensitive
species, such as white birch (Betula
papyrifera), have receded northward during the
same period. Data from some recent studies
also suggest that global warming may be influ-
encing the distribution or physiology of other
plants and animals. Although these data are not
sufficient to determine cause and effect rela-
tionships, they are intriguing enough to identify
future research needs. 

The articles that follow all investigate inter-
esting trends between one aspect of climate
change—global warming—and plant and ani-
mal behavior. Root and Weckstein document
long-term change in the winter distribution of
some birds; global warming is one possible
explanation for these changes. LaRoe and
Rusch’s article shows change in onset of hatch-
ing behavior in selected populations of geese;
and Oglesby and  Smith’s contribution shows a
long-term trend in migratory behavior of some
birds and in blooming of some plants. Finally,
Morse et. al. use existing models to provide a
preliminary assessment of patterns of plant vul-

All four articles are subject to the complexi-
ties common to most work on global change; all
the trends show dramatic year-to-year variation
in response to short-term temperature changes
and all have multiple possible explanations; and
while all show intriguing statistical correlations,
none demonstrates a cause-and-effect relation-
ship. Moreover, these trends do not affect all
species, because different species have different
sensitivities to temperature and because global
climate change is not the only factor affecting
species. As discussed in Root and Weckstein’s
article, a number of competing hypotheses can
be used to explain these changes. Nonetheless,
together these articles suggest that global warm-
ing should be considered as a contributing fac-
tor.
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Changes in
Winter Ranges
of Selected
Birds, 1901-89

by
Terry L. Root

Jason D. Weckstein
University of Michigan

Over time the ranges of species expand and
contract, and abundance patterns shift.

Ranges can expand when suitable new habitat
becomes available or when population pressure
forces migration to new areas. Contractions can
occur when populations decline and individuals
abandon less-than-ideal habitats, which are
often along the edges of species’ ranges. 

We wish to compare historical and recent
range and abundance patterns of selected win-
tering birds, categorize the type of changes that
occurred, and speculate on possible causes of
the changes. We found range expansions in
most birds examined; only a few species exhib-
ited contractions, and patterns of abundance
shifted in almost all species.

Sources of Data

We used data collected by volunteers for the
National Audubon Society’s Christmas Bird
Counts. Wing (1947) summarized data from
1901-40 (from winter 1900-01 to winter 1939-
40), which included 6,853 censuses. We
obtained data for 32,167 censuses from the U.S.
Fish and Wildlife Service for 1960-89, exclud-
ing those for 1969, which were not available at

time of analysis. For more information on how
we used these data, see Root and Weckstein
(1994).

Changes in Ranges

We found extensive changes in the ranges
and abundance patterns of the birds we exam-
ined. Environmental changes that facilitate
rearrangements in species’ ranges and abun-
dances can be due to natural factors, such as
hurricanes transporting cattle egrets (Bubulcus
ibis) to North America (Bock and Lepthien
1976). In the fairly recent past, however, such
changes have been primarily precipitated by
humans, including breaking sod in the prairies
for farming, which allowed the western spread
of American robins (Turdus migratorius; Bent
1949), and building cooling ponds for waste
heat from power plants, which provided open
water for various wintering ducks in the north-
ern states (Root 1988a).

Over the last several decades most ecologi-
cal studies examining range and abundance
changes have focused primarily on investigating
direct natural and human-induced effects of
habitat change. Consequently, by reading the

nerability to climate change. 56:171-176.
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literature one gets the impression that such
changes are the most common and most impor-
tant. 

Indirect effects of habitat change, however,
are probably just as common and important, and
perhaps even more so, although obtaining clear
obvious evidence for indirect effects is difficult
given the fact that other factors are changing at
the same time. One such effect is the biotic
response to the abiotic changes induced by
human disturbance. A good example is changes
in birds’ ranges in response to increasing tem-
perature. 

Range Expansion

One way to examine the possible importance
of global warming on changing ranges is exam-
ining possible physiological mechanisms con-
straining birds’ ranges to warm areas. Previous
work has shown that 50 species of songbirds
(e.g., sparrows and warblers) have range bound-
aries apparently dictated by average minimum
January temperatures (Root 1988b). Ongoing
studies of a few of these key species have shown
significant changes in the location of northern
range boundaries from year to year, and these
correspond to annual climate changes.

Preliminary studies on northern cardinals
(Cardinalis cardinalis) suggest that the lack of

third of the households in North America pro-
vide about 60 lb of bird food a year, with the
average being even higher in New England
(Ehrlich et al. 1988). Consequently, feeders
may have contributed to the expansion of win-
ter ranges of some birds into the northeastern
part of the country (e.g., mourning dove
[Zenaida macroura] Fig. 3; tufted titmouse
[Parus bicolor]; northern cardinal; and evening
grosbeak [Coccothraustes vespertinus]). 

Habitat change due to logging may have
contributed to the extensive and recent range
changes of the barred owl (Strix varia; Fig. 4),
which tends to prefer mixed-aged forests.
Before 1972 no northern populations of this owl
were reported west of the 100th meridian (Root
1988a). The recent expansion is of concern
because this owl’s range is now partly sympatric
with that of the endangered northern spotted
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Fig. 1. Range and abundance patterns of the mute swan. (a) Data from 1901 to 1940, (b) Data
from 1960 to 1989 (except 1969).

b.

a. Wild turkey

Fig. 2.  Range and abundance pat-
terns of the wild turkey. (a) Data
from 1901 to 1940, (b) Data from
1960 to 1989 (except 1969).
stored fat, which is needed to fuel increased
metabolic rates in colder areas (Root 1991), is
the primary factor restraining this bird’s range.
Consequently, as the earth warms, we expect
birds with ranges restricted by low temperatures
to readily expand their ranges. Such expansions
may indeed be already occurring.   

Successfully managed birds show extensive
range expansions. Up to 1940, the mute swan
(Cygnus olor) was recorded only in
Pennsylvania and Michigan (Fig. 1a), but since
then, programs to introduce and establish it—
primarily in parks—have allowed it to spread to
19 states (Fig. 1b). 

The wild turkey (Meleagris gallopavo)
shows even a more dramatic change (Fig. 2). It
originally occurred in the Southwest and in all
the states east of the 100th meridian, except for
North Dakota (Schorger 1966). Hunting pres-
sures, habitat loss, and disease spread by
domestic poultry all contributed to its dramatic
range contraction (Schorger 1966; Hewitt 1967;
Lewis 1973). From 1901 to 1940 it was record-
ed in only 10 states (Fig. 2a). Turkeys were rein-
troduced into all but three states within its orig-
inal range and introduced into all the states out-
side its original range (Fig. 2b). Obviously,
management has had a major effect on this
gamebird.

Similarly, people may have contributed to a
change in both ranges and abundances of vari-
ous seed-eating birds (Fig. 3). On average, a

owl (S. occidentalis caurina), which prefers
ancient forests. The consequences of competi-
tion between these two species are not under-
stood well yet, but nesting sites, foraging, and
diet are similar, particularly in the Northwest
(Taylor and Forsman 1976). Anecdotal evi-
dence, however, suggests the larger, more
aggressive barred owl may be able to displace
the smaller spotted owl (Sharp 1989).  

Other raptors (e.g., northern harrier [Circus
cyaneus] and ferruginous hawk [Buteo regalis])
have also significantly expanded their ranges. In
particular, the golden eagle (Aquila chrysaetos)
has moved east, while the bald eagle
(Haliaeetus leucocephalus; Fig. 5) has spread
into the center of the continent. 

Over the years humans have strongly influ-
enced the expansion of the bald eagle’s range
through water-management programs (Root
1988a). Large lakes and impoundments built in
the 1930’s, locks placed on major waterways,
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a. Mourning dove

Fig. 3. Range and abundance pat-
terns of the mourning dove. (a)
Data from 1901 to 1940, (b) Data
from 1960 to 1989 (except 1969).

b.a. Barred owl

Fig. 4. Range and abundance patterns of the barred owl. (a) Data from 1901 to 1940. (b) Data
from 1960 to 1989 (except 1969).
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As part of the joint United States-Canada
efforts to monitor populations of Arctic

geese and to provide data necessary to set
hunting regulations, scientists have recorded
not only goose population levels, but also
nesting behavior. MacInnes et al. (1990)
analyzed data from four long-term studies of
five different Arctic goose populations.
These studies documented the date the eggs
hatched and the clutch size (number of eggs
per nest) over 35 years (Fig. 1). 

The dates of nest initiation and hatch are
clearly affected by climate and are delayed
by cold weather. The records not only show
wide fluctuations from year to year in
response to annual variations in climate, but
also demonstrate a consistent trend toward

earlier hatching over the period (Fig. 2).
Young Arctic geese today, on the average,
hatch about 30 days earlier than they did 35
years ago; during the same time, average
clutch size has shrunk (Fig. 3). MacInnes et
al. (1990) suggest the change in nest date is
a result of climatic amelioration, that is,

warming (although whether from a long-
term trend or short-term cycle is unclear),
and the change in clutch size is a result of
habitat deterioration.
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Fig. 1. Location of four monitoring sites. Sites
chosen represent localities with information for 5
or more years. Site 1–McConnell River
(60˚ 50’N, 94˚ 25’W; snow goose [Chen
caerulescens] and small Canada goose [Branta
canadensis]); 2– La Pérouse Bay (58˚ 24’N, 94˚
24’W; snow goose); 3–Cape Churchill (58˚ 25’N,
93˚W; medium Canada goose); and 4–South-
hampton Island (63˚ 60’N, 86˚W; snow goose).

Canada goose (Branta canadensis).

Fig. 2. Date of first egg. Although all sites displayed large fluctuations, both the date of first egg and
the mean (average) hatch date became significantly earlier during the period 1951-86. There were no
significant differences in the slopes of trends among sites or species.

Fig. 3. Clutch size of nests of snow and Canada geese at Hudson Bay.
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and numerous hydroelectric plants built with
cooling ponds provide open water in winter,
which this eagle needs for hunting (Southern
1963). 

The winter abundance of the bald eagle
throughout most of the contiguous United
States dropped by about a third from 1957 to
1970 because of the use of persistent insecti-
cides (e.g., DDT) and habitat destruction
(Brown 1975). Since World War II, population
declines in the East have been blamed on habi-
tat destruction due to human disturbances
(waterfront housing and outdoor recreation;
Sprunt 1969). Shooting by ranchers from small
planes from the late 1930’s to the early 1960’s
could have depressed their abundance during
this period and later (USFWS 1992). 

Range Contractions

Of the 58 species examined, only 4 showed
range contractions. This result could have been
partly an artifact of our sample: we did not
examine species that have very restricted
ranges. It may also be due to our methods of
examination because species had to abandon
entire states, not just part of them, before we
recorded a contraction. Of the four species
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Fig. 5. Range and abundance patterns of the bald eagle. (a) Data from 1901 to 1940. (b) Data
from 1960 to 1989 (except 1969).

b.

a. Northern pintail
showing range contractions, one is the brown-
headed cowbird (Molothrus ater) and the other
three depend on open water: pied-billed grebe
(Podilymbus podiceps), northern pintail (Anas
acuta), and common merganser (Mergus mer-
ganser). 

The contraction of the northern pintail is of
particular concern (Fig. 6). This game species
has been extensively managed, yet estimates of
its breeding population have shown a fivefold
decrease since the mid-1900’s (USFWS 1992).
The reasons for this large decline are not yet
understood. 

Conclusion

The data collected by volunteers for the
National Audubon Society’s Christmas Bird
Counts provide excellent information to exam-
ine the ranges and abundance patterns of win-
tering North American birds over both a very
broad spatial scale and a long temporal scale.
The changes that we found were primarily due
to human activity, both purposeful (e.g., man-
agement of game species) and accidental. Some
of these changes could be viewed as being ben-
eficial (e.g., water management programs
increasing bald eagle numbers), while others
could be viewed as negative (e.g., logging
allowed barred owls to invade spotted owl terri-
tories).
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Fig. 6. Maps showing range and
abundance patterns of the northern
pintail. (a) Data from 1901 to
1940. (b) Data from 1960 to 1989
(except 1969).
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Climate
Change in the
Northeast

by
Ray T. Oglesby

Charles R. Smith
Cornell University

Climate is a principal determinant of biolog-
ical distributions and of patterns that char-

acterize the seasonal physiology and behavior
of many organisms (Gates 1993). Consequently,
a changing climate should elicit responses in
these biological properties. Detecting and char-
acterizing such changes are logical early steps
in assessing the significance of climate change
to species and ecosystems (Schwartz 1990).
Most published work on this subject involves
species and ecosystem modeling based on
known physiological and behavioral traits of
selected species. This article presents evidence
from an array of phenological data suggesting
that climate change is occurring and that its bio-
logical effects may already be of considerable
magnitude. (Phenological data are those associ-
ated with the relationship between climate and
periodic phenomena like bird migration and
flowering.)

Most research intended to explore possible
effects of climate change on vegetation has
understandably focused on agricultural and for-
est plants. Our approach, however, focuses on
examining historical trends at the regional level
and identifying species of potential value as cli-
mate change indicators. With the assumption,
based on climate models, that unidirectional

Specifically, dates of the first return of spring-
migrating birds and of the first bloom of spring
wildflowers in the Northeast were sought in
long-term (50 or more years), continuous, reli-
able records.

We computerized and analyzed two major
and several minor long-term data sets from
handwritten records from three New York State
locations (Fig. 1). An especially rich source was
records from the Cayuga Bird Club at Ithaca.
Highly reliable observers recorded first spring
sightings of migratory birds from 1903 to the
present in the Cayuga Lake basin of central
New York as delineated by Wiegand and Eames
(1925). A second source of extensive, high-
quality information was records for dates of
first spring arrival for migrating birds and dates
of first bloom for spring wildflowers at the
Mohonk Preserve, an upland site in the mid-
Hudson Highlands region of southeastern New
York; these records extend from the late 1920’s
onward. Both sites are expected to continue
generating comparable data sets. A third data
set includes dates of first spring arrival for
Louisiana waterthrush (Seiurus motacilla) and
solitary vireo (Vireo solitarius) in western New
York (1952 to present) on the Allegheny
Plateau.
Contents Article Page

warming is already occurring and will probably
accelerate over the next few decades, we began
to search for evidence of biological responses
among very different groups of organisms.

Our general approach to data analysis has
been in the form of species plots with date of
first arrival or first bloom as the vertical axis
and sequence of years as the horizontal axis
(Figs. 2-4).

Status and Trends

Flowering Plants

Phenological data were examined for 15
species of spring wildflowers on time of first
blooming at the Hudson Highlands site  (Fig. 2).
Six species of wildflowers all exhibited signifi-
cantly earlier (P ≤ 0.05) rather than later bloom-
ing (averaging -19.8 days/50 yr; R2 = 0.26). The
remaining nine species showed no significant
patterns of change. We only can speculate why
six species exhibited such a pronounced change
and nine others did not. Clues may be obtained
when existing data for other plant species at this
site are examined. For example, the set of
species showing earlier blooming appears to
include plants typically found in more open
locations where soil temperature would show
the earliest and most rapid response to warm-
ing. One woody shrub, common witch-hazel
(Hamamelis virginiana), which blooms in early
fall, also showed a significant trend toward ear-
lier bloom.

1

2

3

Fig. 1. New York locations from
which phenological data were
obtained. 1–Allegheny Plateau
(birds); 2–Cayuga Lake basin,
Ithaca (birds); and 3–Hudson
Highlands (flowering plants and
birds).
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Fig. 2. Trend for hepatica
(Hepatica acutiloba) from the
Hudson Highlands (Mohonk
Preserve) of southeastern New
York, showing tendency for earlier
spring blooming. The negative
slope of the trend is significant at
P < 0.05.
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Allegheny Plateau, first-arrival data, covering a
40-year period beginning in 1952, were avail-
able for two species of birds, Louisiana
waterthrush and solitary vireo. Both species
tended to earlier arrival.

Conclusions

The trends reported here toward earlier
arrival dates for migratory birds and earlier
blooming dates for spring wildflowers are con-
current with patterns of climatic warming and
consistent with what might be expected in the
context of global warming. At the same time,
local changes in land cover, with the forested
area of the region increasing by more than 30%
since 1900, may provide greater amounts of
suitable habitat for attracting and holding
migrating landbirds, thereby contributing to
observed patterns of change in migratory
behavior. 

It is noteworthy that only two bird species
examined, and no plant species, showed trends
to either later spring arrival or later blooming. If
explanations of trends for only one of these two
major groups were sought, alternative explana-
tions could be advanced, such as expansion of
bird ranges due to changes in land use (see Root
and Weckstein, this section). In addition, a
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Fig. 3. Trend for purple martin (Progne subis) from the
Cayuga Lake basin of central New York showing a clear
tendency for earlier spring arrival. The negative slope of
the trend is significant at P < 0.005.
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Migratory Landbirds

Records of first sightings of spring migrants
from the Cayuga Lake basin of central New
York are from 1903 to the present and represent
130 species. More than 5,000 first arrival dates
were examined for 76 species of migratory
landbirds, excluding waterfowl, hawks, and
shorebirds. Thirty-nine species (51%) showed
90-year trends of significantly earlier (P ≤ 0.05)
arrival, with an average shift of about 5.5
days/50 yr (for example, see Fig. 3). Thirty-five
species (46%) showed no significant change (P
≤ 0.05) in dates of first spring arrival (Fig. 4).
Louisiana waterthrush and mourning warbler
(Oporornis philadelphia) were the only species
showing significant trends (P ≤ 0.05) toward
later spring arrival dates. 

Of those species showing significantly earli-
er arrival dates, 85% are long-distance
Neotropical migrants, which normally overwin-
ter in Central and South America. For the
Mohonk Preserve data, 6 of 10 migratory bird
species examined showed significant trends
toward earlier arrival. For the western

recent examination of dates of fall departure for
migrating birds in Germany (Gatter 1992)
shows later fall departures. Such fall trends
would be expected in the context of climatic
warming and agree with the spring trends we
report. 

Given the patterns reported here, climate
change is the one variable affecting diverse
groups of organisms that offers a rational and
parsimonious explanation for the observed
changes in timing of migration in birds and
blooming in plants we and others have
observed. Research either planned or in
progress includes analyzing additional data sets
as well as more sophisticated statistical analy-
sis; determining the species most appropriate
for monitoring climate change; finding and ana-
lyzing data sets that describe the phenology of
other taxa; and possibly extending the study to
other locations.
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Fig. 4. Trend for blackpoll warbler (Dendroica striata)
from the Cayuga Lake basin of central New York, showing
no tendency for earlier spring arrival. The slope of the
trend is not significantly different from zero.
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Potential
Impacts of
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Climate change is a natural phenomenon that
has occurred throughout the history of the

earth. The frequency and magnitude of climate
change have varied substantially during and
between glacial periods, and temperatures on
both global and local scales have been both sub-
stantially warmer and colder than present-day
averages (Ruddiman and Wright 1987; Pielou
1991; Peters and Lovejoy 1992). While poten-
tial magnitudes of local and global climate
change are of concern, it is the predicted rate of
temperature change that poses the greatest
threat to biodiversity. The ability of species to
survive rapid climate changes may partially
depend on the rate at which they can migrate to
newly suitable areas.

In the next few centuries climate may
change rapidly because of human influences.
The concentrations of “greenhouse” gases in the
atmosphere are being altered by activities such
as carbon dioxide emission from burning fossil
fuels. Models of climate change (IPCC 1990,
1992) predict an increase in mean global tem-
perature of about 1.5-4.5°C (2.7-8.1°F) in the
next century. Temperature changes suggested
by general circulation models would present
natural systems with a warmer climate than has
been experienced during the last 100,000 years.

Analysis of Potential Effects

An analysis conducted by The Nature
Conservancy on the potential effects of climate
change on the native vascular flora of North
America (Morse et al. 1993) provides a prelim-
inary assessment of patterns of plant species’
vulnerability. For this preliminary analysis, we
made several simplifying assumptions about the
relationships between plants and climate to esti-
mate the viable climate “envelopes” for each of
over 15,000 native vascular plant species in
North America recognized in the checklist by
Kartesz (1994). 

The principal assumptions are that climate
determines the range of plant species; mean
annual temperature adequately approximates
climate; species distribution appears to be in
equilibrium with present climate; and a species’
current climate envelope is equivalent to its tol-
erance of climate variation. Together, these
assumptions state that the current distribution of
each species is greatly influenced by climate
and that temperature adequately represents cli-
mate. 

Clearly, each of the above assumptions are
not actually met for all native vascular plant
species. For example, precipitation and soil
Contents Article Page

While this would be a substantial change from
the current climate, the rate of climate change is
the greatest determinant of the impact on bio-
logical diversity. Future climate change due to
human influences could occur many times
faster than any past episode of global climate
change (IPCC 1990, 1992; Schneider et al.
1992).

The strong association between distributions
of plant species and climate suggests that rapid
global climatic changes could alter plant distri-
butions, resulting in extensive reorganization of
natural communities (Graham and Grimm
1990). Climate changes could also lead to local
extirpations of plant populations and species
extinctions. The effects of global climate
change are likely to vary regionally, depending
on factors such as proximity to oceans and
mountain ranges. Alteration of the amount and
timing of precipitation and evaporation would
affect soils and habitats; freshwater ecosystems
are likely to be vulnerable to these changes in
hydrology (Carpenter et al. 1992). Even minor
fluctuations in the availability of water can rad-
ically affect habitat suitability for many wetland
plant species. Rapid, large-scale shifts in tem-
perature, precipitation, and other climate pat-
terns could have broad ecological effects, pre-
senting major challenges to the conservation of
biodiversity.

moisture are extremely important determinants
of range limits in some regions. These simpli-
fied temperature envelopes, however, allow the
initial identification of broad patterns of
species’ vulnerability to climate change. 

In the analysis, the mean temperature was
uniformly increased in 1°C (1.8°F) increments
up to an increase of 20°C (36°F) above current
mean annual temperatures (Fig. 1). Many
species would be vulnerable to climate change
in all scenarios of uniform temperature
increase. With a mean global warming of 3°C
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Fig. 1. The proportion of native vascular plant species that
were entirely out of their climate envelopes as a function
of the increase in temperature above mean annual temper-
ature. Three methods were used to determine climate
envelopes (A, B, C).
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(5.4°F), 7% to 11% of 15,148 native vascular
plant species in North America (about 1,060 to
1,670 species) could be entirely out of their cli-
mate envelopes. These species would thus be
vulnerable to extinction unless they can migrate
rapidly enough or can persist despite climate
change. In comparison, about 90 plant species
in North America are believed to have gone
extinct in the last two centuries (Russell and
Morse 1992).

Rarity and Vulnerability

Of the native vascular plant species studied,
about 4,100 (27%) are considered rare by The
Nature Conservancy (see article by Stein et al.,
p. 399, for definitions of ranking system for rar-
ity). These species occur at fewer than 100 sites
or are comparably vulnerable. Our analysis
shows that these rare plants are likely to be fur-
ther affected by climate change. In this analysis,
about 10%-18% of the rare species would be
vulnerable to a mean 3°C (5.4°F) temperature
increase. In contrast, only 1% to 2% of the com-
mon species appear vulnerable under these con-
ditions. These results imply that numerous rare
vascular plant species could be additionally
threatened by climate change. Early warnings
of species’ vulnerability to a rapidly changing

peratures by 4-7°C (7.2-12.6°F), accompanied
by dramatic decreases in precipitation. Future
analyses that incorporate regional changes in
climate projected by models will further refine
our understanding of regional patterns of plant
species’ vulnerability to climate change.

Dispersal and Persistence of
Vascular Plants

The survival of species during periods of
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Fig. 2. The proportion of species
that would be out of their climate
envelope in each state or province
with a +3°C (+5.4°F) temperature
change.
climate might allow the development and
implementation of new conservation strategies
before a crisis occurs, thus improving the suc-
cess rate for the protection of rare plants while
minimizing the cost.

Regional Patterns of
Vulnerability

Based on the uniform 3°C (5.4°F) mean
increase in temperature used for this prelimi-
nary climate change impacts analysis, there
appear to be regional patterns to the proportion
of potentially vulnerable species in each state or
province (Fig. 2). In this initially simplified
analysis, the southeastern states have the high-
est percentage of species out of their climate
envelopes, while the Great Plains states and
provinces may experience proportionally fewer
species losses. The relatively high proportion of
species vulnerability in the Southeast may be
due in part to the presence in state floras of
Appalachian Mountain species at their southern
range limits. Many of these species are already
rare in states along their southern range limits
and are likely to be lost from the local floras if
the climate warms.

Global warming models, however, suggest
that the temperature and precipitation changes
in the interior of the continent will be far greater
than in coastal regions. In the Great Plains,
some models suggest increases in summer tem-

changing climate will be determined in part by
their abilities to disperse to new sites or to per-
sist in place. For this analysis, a dispersal-abili-
ty scale was used to assess the potential for dif-
ferent species to migrate. The scale is based on
characteristics important to species mobility
such as pollination mechanisms, dispersal
mechanisms, reproductive characteristics,
degree of self-compatibility, growth form,
trophic type, and number of populations.
Biological factors likely to increase species
mobility include wind pollination, at least par-
tial self-compatibility, dispersal of propagules
by wind or birds, and a short generation time.
Characteristics such as dependence on specific
pollinators (e.g., yucca and yucca moth), dis-
persal by ants, or a long generation time reduce
the chances for successful rapid dispersal and
establishment. By using these criteria, most of
the species studied appear to have an intermedi-
ate dispersal potential.

The species in this analysis that would be
vulnerable in a +3°C (5.4°F) climate appear to
have characteristics that limit long-distance dis-
persal (Fig. 3). This suggests that the plants
potentially most vulnerable to climate change
may be those forced to adapt in place to new
conditions. In general, rare plants and narrow
endemics will be particularly endangered by
climate change. These plants often have restrict-
ed ranges, a reduced seed source, and may
depend on specific microclimatic conditions for
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survival. Rare plants would thus potentially
have trouble migrating to comparable new sites,
regardless of their ability to disperse. For exam-
ple, Boott’s rattlesnake-root (Prenanthes boot-
tii) and mountain avens (Geum peckii), endem-
ic to alpine habitats in the northeastern United
States, would be particularly sensitive to global
warming.

Migration Rate 

During the warming at the end of the last
glacial period, plant migration rates, as calculat-
ed from the fossil pollen record, ranged from
about 5 to 150 km (3-90 mi) per century
(Shugart et al. 1986). Human-caused climate
change may occur at rates more than five times

plant species at particular locations than small
shifts in the average climate. More frequent
droughts, fires, and pest and pathogen outbreaks
are predicted to act in conjunction with climate
change to significantly transform the landscape
(Peters 1992). This prediction is supported by
paleoecological evidence that altered distur-
bance regimes can intensify the effects of cli-
mate change on plants and increase the amount
of overall vegetational change (Davis 1989).

Threats by Weedy Exotics

With global climate change, some exotic
weeds may be favored over native species.
Many weeds are able to expand relatively
quickly, posing serious threats to existing
species and overall biodiversity (Schwartz
1992). Many weedy species are widespread,
prolific, fast-growing annuals capable of estab-
lishing in disturbed habitats and are often
favored by disturbances. Climate-induced
changes could expose native plants to non-
native competitors for the first time (Peters
1992), stressing the balance established
between native plants and their habitat. Exotic
weeds may become a greater problem in the
management of many preserves and natural
areas.
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Fig. 3. The proportion of species
on the dispersal-ability scale that
are out of their climate envelopes
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faster than any changes since the last glacial
maximum, including the period of most rapid
deglaciation (Overpeck et al. 1991). Various
studies have suggested that such rapid climate
changes would require shifts of plant ranges of
up to 500 km (300 mi) within the next century,
exceeding the known rates of migration for
many plant species (Davis 1984; Davis and
Zabinski 1992).

Since species respond individually to cli-
mate change, migration rates will vary within
and among natural communities. It is unlikely
that entire biological communities would move
together in response to climate changes
(Graham and Grimm 1990). Some plants may
respond rapidly to changes; others may survive
for several generations in place or persist as
long-lived clones despite significant climate
change. The fossil record provides evidence of
decade- or even century-long time lags in
species migration (Davis 1989). The process of
changing community composition in response
to climate change has been documented in the
fossil record through the disassociation and
reassembly of plant and animal taxa (Graham
and Grimm 1990). This variation in species
assemblages displays the transitory nature of
former as well as existing and future communi-
ty types.

Temperature extremes and changes in the
frequency and severity of local disturbances
may have a greater influence on the survival of

Landscape Fragmentation

The potentially rapid rates of warming, com-
bined with habitat loss and fragmentation from
human development, suggest that many species
will not adjust as successfully to climate change
as in the past. Most native plant species exist in
a highly fragmented landscape that further sep-
arates appropriate habitat patches, increasing
the dependence of many species on relatively
rare events of long-distance dispersal.
Furthermore, species often must disperse across
hostile habitats, including roads, cities and sub-
urbs, and farmland (Peters 1992). Finally, plants
would need to establish themselves in land-
scapes where many of the open or disturbed
areas have been colonized by aggressive weedy
exotics.

Climate Change and
Conservation Planning 

Rapid climate change could place novel
demands and constraints on plant species con-
servation. Vulnerability to climate change could
affect selection and design of new preserves and
management procedures in existing preserves,
especially in southern or low-elevation portions
of species’ ranges. Management of species
threatened by climate change could involve
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restoration and transplantation of species
among preserves or into new locations. Actions
such as removal of exotic species or hydrologi-
cal controls may not be qualitatively different
than those that are currently required of land
managers, but climate change may increase the
intensity and frequency of threats from exotic
species, drought, and fire. In view of the unpre-
dictable and potentially devastating effects of
global climate change on species’ viability and
distribution, conservation strategies such as
propagation of critical species outside of their
natural range to provide materials for reintro-
ductions are likely to become increasingly
important to preserve biological diversity. 
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